Ice slurry is a promising functional fluid with high thermal energy density and high heat transfer rate. However, large ice particles in the ice slurry can cause blocking of tubes during ice slurry flow. Therefore, it is preferable to use fine ice particles to prepare ice slurry in many fields. In this study, ice slurries were generated from supercooled solutions containing additives, such as anti-freeze protein and polyvinyl alcohol, to prevent the increase in the ice particle size in the formation process of the ice slurry. The concentration of the solute and amount of the additive were varied as experimental parameters, and the size of the ice particles was evaluated. The average area of the ice particles decreased with the addition of the additives. In particular, anti-freeze protein was effective for generating fine ice particles in the ice slurry. However, the effects of the additives became weaker for higher concentration of the solute, and the size of the ice particles was almost the same regardless of the concentration of the solute and the amount of the additive. Moreover, it was found that particular properties, such as the freezing-point depression, kinematic viscosity of the solution, and effective latent heat of fusion, did not affect the size of the ice particles in the ice slurry generation process.
Read full abstract