SummaryConsequences of increasing atmospheric CO2concentration on plant structure, an important determinant of physiological and competitive success, have not received sufficient attention in the literature. Understanding how increasing carbon input will influence plant developmental processes, and resultant form, will help bridge the gap between physiological response and ecosystem level phenomena. Growth in elevated CO2alters plant structure through its effects on both primary and secondary meristems of shoots and roots. Although not well established, a review of the literature suggests that cell division, cell expansion, and cell patterning may be affected, driven mainly by increased substrate (sucrose) availability and perhaps also by differential expression of genes involved in cell cycling (e.g. cyclins) or cell expansion (e.g. xyloglucan endotransglycosylase). Few studies, however, have attempted to elucidate the mechanistic basis for increased growth at the cellular level. Regardless of specific mechanisms involved, plant leaf size and anatomy are often altered by growth in elevated CO2, but the magnitude of these changes, which often decreases as leaves mature, hinges upon plant genetic plasticity, nutrient availability, temperature, and phenology. Increased leaf growth results more often from increased cell expansion rather than increased division. Leaves of crop species exhibit greater increases in leaf thickness than do leaves of wild species. Increased mesophyll and vascular tissue cross‐sectional areas, important determinates of photosynthetic rates and assimilate transport capacity, are often reported. Few studies, however, have quantified characteristics more reflective of leaf function such as spatial relationships among chlorenchyma cells (size, orientation, and surface area), intercellular spaces, and conductive tissue. Greater leaf size and/or more leaves per plant are often noted; plants grown in elevated CO2exhibited increased leaf area per plant in 66% of studies, compared to 28% of observations reporting no change, and 6% reported a decrease in whole plant leaf area. This resulted in an average net increase in leaf area per plant of 24%. Crop species showed the greatest average increase in whole plant leaf area (+ 37%) compared to tree species (+ 14%) and wild, nonwoody species (+ 15%). Conversely, tree species and wild, nontrees showed the greatest reduction in specific leaf area (– 14% and – 20%) compared to crop plants (– 6%). Alterations in developmental processes at the shoot apex and within the vascular cambium contributed to increased plant height, altered branching characteristics, and increased stem diameters. The ratio of internode length to node number often increased, but the length and sometimes the number of branches per node was greater, suggesting reduced apical dominance. Data concerning effects of elevated CO2on stem/branch anatomy, vital for understanding potential shifts in functional relationships of leaves with stems, roots with stems, and leaves with roots, are too few tomake generalizations. Growth in elevated CO2typically leads to increased root length, diameter, and altered branching patterns. Altered branching characteristics in both shoots and roots may impact competitive relationships above and below the ground. Understanding how increased carbon assimilation affects growth processes (cell division, cell expansion, and cell patterning) will facilitate a better understanding of how plant form will change as atmospheric CO2increases. Knowing how basic growth processes respond to increased carbon inputs may also provide a mechanistic basis for the differential phenotypic plasticity exhibited by different plant species/functional types to elevated CO2.
Read full abstract