Growth hormone, prolactin, the fish hormone, somatolactin, and related mammalian placental hormones, including placental lactogen, form a family of polypeptide hormones that share a common tertiary structure. They produce their biological effects by interacting with and dimerizing specific single transmembrane-domain receptors. The receptors belong to a superfamily of cytokine receptors with no intrinsic tyrosine kinase, which use the Jak-Stat cascade as a major signalling pathway. Hormones and receptors are thought to have arisen as a result of gene duplication and subsequent divergence early in vertebrate evolution. Mammalian growth hormone and prolactin show a slow basal evolutionary rate of change, but with episodes of accelerated evolution. These occurred for growth hormone during the evolution of the primates and artiodactyls and for prolactin in lineages leading to rodents, elephants, ruminants, and man. Placental lactogen has probably evolved independently on three occasions, from prolactin in rodents and ruminants and from growth hormone in man. Receptor sequences also show variable rates of evolution, corresponding partly, but not completely, with changes in the ligand. A principal biological role of growth hormone, the control of postnatal growth, has remained quite consistent throughout vertebrate evolution and is largely mediated by insulin-like growth factors. Prolactin has many and diverse roles. In relation to lactation, the relative roles of growth hormone and prolactin vary between species. Correlation between the molecular and functional evolution of these hormones is very incomplete, and it is likely that many important functional adaptations involved changes in regulatory elements, for example, altering tissue of origin or posttranscriptional processing, rather than change of the structures of the proteins themselves.
Read full abstract