When plants face biotic stress, the induction of defence responses imposes a massive demand for carbon and energy resources, which could decrease the reserves allocated towards growth. These growth–defence trade-offs have important implications for plant fitness and productivity and influence the outcome of plant–pathogen interactions. Biotic stress strongly affects plant cells’ primary metabolism, including photosynthesis and respiration, the main source of energy and carbon skeletons for plant growth, development, and defence. Although the nature of photosynthetic limitations imposed by pathogens is variable, infection often increases photorespiratory pressure, generating conditions that promote ribulose-1,5-bisphosphate oxygenation, leading to a metabolic shift from assimilation to photorespiration. Photorespiration, the significant metabolic flux following photosynthesis, protects the photosynthetic apparatus from photoinhibition. However, recent studies reveal that its role is far beyond photoprotection. The intermediates of the photorespiratory cycle regulate photosynthesis, and photorespiration interacts with the metabolic pathways of nitrogen and sulphur, shaping the primary metabolism for stress responses. This work aims to present recent insights into the integration of photorespiration within the network of primary metabolism under biotic stress. It also explores the potential implications of regulating photosynthetic–photorespiratory metabolism for plant defence against bacterial and fungal pathogens.
Read full abstract