BackgroundChronic ketamine use leads to cognitive impairments, however, the neural mechanisms underpinning these impairments are still unclear. AimsMany studies showed Anterior cingulate cortex (ACC)is strongly involved in cognition and drug addiction, as supported by our previous studies. The objective of this study was to assess the variations in resting-state functional connectivity (FC) changes in the right anterior cingulate cortex (ACC) of chronic ketamine users (CKUs) and their relationship with cognitive performance. MethodsThe study enrolled 28 chronic ketamine users (CKUs) and 30 healthy controls (HCs). Resting-state functional magnetic resonance imaging (fMRI) data were gathered from both groups. Cognitive functions were evaluated using the MATRICS Consensus Cognitive Battery (MCCB). ResultsCKUs demonstrated significantly poorer cognitive performance than HCs in various cognitive domains, including Visual Learning, Speed of Processing, Working Memory, and the composite score of MCCB. Group-level comparisons revealed that CKUs exhibited enhanced functional connectivity between the right ACC and the right postcentral gyrus (PCG) compared to HCs. There was a positive relationship between the connectivity of right ACC-PCG and reasoning and problem-solving score, but there was no significant association with the characteristics of ketamine use. ConclusionCKUs showed enhanced connectivity between the right ACC and the right PCG. This enhanced functional connectivity may indicate functional compensation for cognitive deficits in CKUs, especially for reasoning and problem-solving impairments in CKUs.
Read full abstract