The substrate in the aquatic environment plays a crucial role in nutrient deposition and recovery for the growth of aquatic organisms. In order to optimize the culture medium of Procambarus Clarkii, culture media from different sources were selected in this study to explore their effects on the growth and immune performance of red swamp crayfish. The results showed that the weight gain rate (WGR), body length growth rate (BLGR) and specific growth rate (SGR) in group I2 were the highest, followed by group I1 and group I3. The WGR and SGR of crayfish in the I1 and I2 groups were significantly higher than those in the I3 group (p < 0.05). The activities of acid phosphatase (ACP), alkaline phosphatase (AKP) and superoxide dismutase (SOD) were the highest in group I2, followed by group I3, and the lowest in group I1. The expression trends in growth-related genes, nuclear hormone receptor (E75), molt-inhibiting hormone (MIH) and chitinase genes were similar, and the expression levels in the I2 group were higher than those in the I1 and I3 groups. It was noted that the expression levels of E75 and MIH genes in the I2 group were significantly higher than those in the I3 group (p < 0.05). α diversity analysis of 16S rRNA data showed that there was no statistically significant difference in the abundance of intestinal flora among the three culture substrate groups. The β diversity in the Xitangni group, crayfish Tangni group and Shuitangni group was significantly different. These changes in microbiota suggest that using different substrates to culture crayfish leads to differences in gut microbiota diversity. To sum up, the growth in crayfish and immune performance influenced by the culture substrate condition and aquatic breeding sediment substrates, rather than crab pool and paddy field pond sediment substrates, showed a better effect.
Read full abstract