In today’s competitive environment, multi-branch companies allocate their stores with the aim of expanding their territorial coverage to attract new customers and increase their market share. Consumer satisfaction surveys either produce global performance results or they are not able to differentiate consumer perceptions using location analytics. This research develops a novel framework to assist multi-branch companies in mapping the consumer satisfaction performance of their stores, expanding conventional customer relationship management to the spatial context. The framework developed proposes a decision model that combines the Group Decision Support extension of the PROMETHEE and CRITIC methods in a GIS environment to generate satisfaction performance mappings. The developed decision-making framework converts consumer responses into satisfaction performance maps, allowing the company’s stores and their competitors to be evaluated. Moreover, it provides insight into the potential opportunities and threats for each store. The performance of the proposed framework is highlighted through a case study involving a multi-branch coffeehouse company in a Greek city. Finally, a tool developed to assist the computational part of the framework is presented.
Read full abstract