Road salt poses a threat to the quality of soils and water resources. Wetlands located in salt contaminated areas are at risk of experiencing lower plant and animal species diversity. Therefore, it is critical to understand how modifications to salt application rates and hydrological events impact wetland water quality. Here, we use chloride mass flux, discharge, groundwater chloride concentration, meteorological, and salt application data from 2012-2020 to estimate chloride accumulation and outflux rates in the Kampoosa Bog subwatersheds, located in Stockbridge and Lee, Massachusetts, and bordered by major highways (Interstate-90 and U.S. Route 7). We also investigate the correlation between wetland size and chloride retention rate. During the 2018-2019 period, mean annual chloride application rates in the major watershed increased from 363000 kg/year (2012-2017) to 479000 kg/year. This led to a net chloride accumulation (KB100 subwatershed: 339000 kg; KB150 subwatershed: 188000 kg) and increased groundwater chloride concentrations in the fen. Chloride outflux from these subwatersheds was primarily driven by discharge. We found that the relationship between wetland percent cover and chloride retention is complex. Although the percent wetland cover is greater in the KB100 main wetland region compared to the KB150 subwatershed, high precipitation in 2018 resulted in similar chloride retention efficiencies (~26%). During the drier year (2019), chloride retention was higher in the wetland region due to its gentle slopes which promote water accumulation and consequently higher evaporation rates which lowers discharge and chloride outfluxes. The chloride steady-state concentration analysis also suggests that there is potential for chloride accumulation to continue because the watershed has not yet reached steady-state chloride concentrations. Without major modifications to salting practices, chloride concentrations will continue increasing and potentially promote the re-growth of invasives (Phragmites) and continued growth of salt tolerant species (Typha angustifolia/xglauca) that diminish plant diversity.
Read full abstract