Among the procedures included in surface mines’ closure, the determination of post-mining land uses constitutes one of the early but primary steps. This research aims to develop an algorithm for the selection of the most suitable land use spatial distribution in the post-mining area of a surface lignite mine in northern Greece. Considering the already reclaimed areas and the local socioeconomic conditions, six distinct criteria that concern physical local characteristics were selected and, in turn, spatially combined with parameters affecting the mining area. Mining experts attributed weights to the criteria regarding their importance for the examined land uses. The six criteria concerned physical local characteristics (slope, elevation, and distance from villages, rivers, roads, and transmission lines), while the parameters affecting the mining area referred to the type of ground (undisturbed or graded areas), existing infrastructure, and mine closure planning, emphasizing the final landscape of the mining area. The investigated land uses encompassed agricultural, forest, industrial (including buildings, infrastructure, and photovoltaic parks), and recreational parks. Through the application of a fuzzification algorithm within a geographical information system (GIS) environment, four land use suitability maps were generated, which were subsequently overlaid to derive a comprehensive suitability map. The final suitability map was derived from the integration of the mining parameters as spatial information into the algorithm. The findings indicate that, even though the land use suitability analysis could be derived from a mathematical model, the integration of qualitative information related to the mining specifications is necessary to produce more reliable results. The proposed algorithm can be used as a useful tool by decision-makers in the mining industry to plan post-mining reclamation based on suitable criteria.
Read full abstract