Uncrewed aircraft systems (UASs) and structure-from-motion/multi-view stereo (SfM/MVS) photogrammetry are efficient methods for mapping terrain at local geographic scales. Traditionally, indirect georeferencing using ground control points (GCPs) is used to georeference the UAS image locations before further processing in SfM software. However, this is a tedious practice and unsuitable for surveying remote or inaccessible areas. Direct georeferencing is a plausible alternative that requires no GCPs. It relies on global navigation satellite system (GNSS) technology to georeference the UAS image locations. This research combined field experiments and simulation to investigate GNSS-based post-processed kinematic (PPK) as a means to eliminate or reduce reliance on GCPs for shoreline mapping and charting. The study also conducted a brief comparison of real-time network (RTN) and precise point positioning (PPP) performances for the same purpose. Ancillary experiments evaluated the effects of PPK base station distance and GNSS sample rate on the accuracy of derived 3D point clouds and digital elevation models (DEMs). Vertical root mean square errors (RMSEz), scaled to the 95% confidence interval using an assumption of normally-distributed errors, were desired to be within 0.5 m to satisfy National Oceanic and Atmospheric Administration (NOAA) requirements for nautical charting. Simulations used a Monte Carlo approach and empirical tests to examine the influence of GNSS performance on the quality of derived 3D point clouds. RTN and PPK results consistently yielded RMSEz values within 10 cm, thus satisfying NOAA requirements for nautical charting. PPP did not meet the accuracy requirements but showed promising results that prompt further investigation. PPK experiments using higher GNSS sample rates did not always provide the best accuracies. GNSS performance and model accuracies were enhanced when using base stations located within 30 km of the survey site. Results without using GCPs observed a direct relationship between point cloud accuracy and GNSS performance, with R2 values reaching up to 0.97.