In this paper, an algebraic method which is based on the groebner bases theory is proposed to solve the polynomial functions conditional extreme. Firstly, we describe how to solve conditional extreme value problems by establishing Lagrange functions and calculating the differential equations derived from the Lagrange functions. Then, by solving the single variable polynomials in the groebner basis, the solution of polynomial equations could be derived successively. We overcome the high number of variables and constraints in the extreme value problem. Finally, this paper illustrates the calculation process of this method through the general procedures and examples in solving questions of conditional extremum of polynomial function.
Read full abstract