In the grinding process of 2.5D C/SiC composites by the ordered grinding wheel, the signals are more complicated due to the special structure of the material and the ordered abrasive clusters, which makes it difficult to identify the wear state of the grinding wheel. To solve this problem, this study employs the analysis methods of direct and indirect. The acoustic emission signals, grinding force and grinding temperature signals throughout the entire lifespan of the grinding wheel were collected, and the topography of the grinding wheel was photographed. The difference in wear behavior between the ordered grinding wheel and the traditional disordered grinding wheel was compared and analyzed. The corresponding relationship between the ordered grinding wheel wear behavior and various signals was studied in depth. The results showed that the initial wear occurred during the 1st-80th grinding process, the stable wear occurred during the 81st-224th grinding process, and the serious wear occurred during the 225th-350th grinding process. Additionally, this research further extracted the key features of various signals, and used the Pearson correlation coefficient to identify the features highly related to grinding wheel wear. Subsequently, LDA was used to reduce the dimension of individual signal types. By comparing the recognition effects of different signal type combinations, the optimal combination was determined. Finally, this research proposed a DBO-ELM model for the recognition and classification of ordered grinding wheel wear state. Compared to four common machine learning models, namely KNN, SVM, ELM, and BP, the proposed DBO-ELM model demonstrated a classification accuracy of 94.86 %, which was increased by 25.57 %, 16 %, 16 % and 7.86 % respectively. This demonstrates that the DBO-ELM model proposed in this research has certain advantages and potential in the wear state recognition of abrasive clusters ordered grinding wheel.
Read full abstract