This paper presents the control and application of a single-phase T-type nine-level cascaded H-Bridge (TCHB) multilevel inverter (MLI) topology. This paper focuses on the effectiveness of the TCHB and its control by presenting the inverter operation based on a PI current controller along with a Maximum Power Point Tracking (MPPT) scheme to realize a grid-tied photovoltaic (PV) system and a novel PWM method offering self-balancing at the DC-link capacitors. In order to attain gating signals for power transistors (IGBTs), the TCHB employs a PWM with one triangular carrier signal and eight reference signals. In addition, a mathematical modelling of the PWM method, along with a theoretical explanation of the self-balancing process has also been provided. To prove the effectiveness of the proposed TCHB topological design, it has been comparatively analysed against other fundamental MLI and symmetric CHB topologies. In addition, to corroborate the working of the control and the PV system application, employing TCHB inverter offering nine output voltage levels (±2Vdc, ±2¾Vdc, ±Vdc, ±½Vdc, 0), simulation and hardware results have been presented.
Read full abstract