The author’s research group has been conducting research on applications of various meteorological Grid Point Value (GPV) data offered by the Japan Meteorological Agency (JMA) to the field of wind power generation. In particular, the group’s research has been focusing on the following areas: 1) the use of GPV data from the JMA Meso-Scale Model (MSM-S; horizontal resolution: 5 km) and the JMA Local Forecast Model (LFM-S; horizontal resolution: 2 km), and 2) examinations of the prediction accuracy of local wind assessment with the use of these data. In both the MSM-S and the LFM-S, grid points are fixed at 10 m above the sea (ground) surface. The purpose of the present study is to establish a method in which the values of the MSM-S and LFM-S wind speed data from the 10 m height are used as the reference wind speed and are, using a power law, vertically extrapolated to 80 to 90 m heights, typical hub-heights of offshore wind turbines. For this purpose, the present study examined time-averaged vertical profiles of wind speed over the ocean based on the MSM-S data and in-situ data in the Hibikinada area, Kitakyushu City, Fukuoka Prefecture, Japan. As a result, it was revealed that a strong wind shear existed close to the sea surface, between the 10 and 30 m heights. In order to address the above-mentioned wind shear, a two-step vertical extrapolation method was proposed in the present study. In this method, two values of N, specifically for low and high altitudes (below and above approximately 30 m, respectively), were calculated and used. The data were created for the five years between 2012 and 2016. Similarly to previous analyses, the analysis of the created data set indicated that the potential of offshore wind power generation in the Hibikinada area, Kitakyushu City is quite high.
Read full abstract