The refinement and optimization of a method combining headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry (GC-MS) was successfully performed for the first time to determine seven carbonyl and dicarbonyl compounds, including glyoxal, methylglyoxal, dimethylglyoxal, and malondialdehyde in infant formulae, related to lipid peroxidation. HS-SPME was utilized for simultaneous extraction and derivatization with pentafluorophenylhydrazine (PFPH). Critical parameters such as temperature, pH, extractive phase, and salting-out were meticulously investigated and fine-tuned by an asymmetrical 2232//9 screening design to ensure the method's efficacy and reliability. Optimal conditions included a PFPH concentration of 5 g/L, pH 5.0, head-space extraction at 60 °C within 10 min, utilizing a DVB/CAR/PDMS coating, and a 20% w/w salting-out. The analytical validation of this method, compliant with FDA guidelines, demonstrated exceptional linearity, sensitivity, specificity, precision (RSD ≤13.8%), and accuracy (84.8% ≤ recovery ≤111.5%). The metric approach AGREEprep confirms its eco-friendliness, marking a significant step towards an environmentally conscious approach in infant formula analysis. An occurrence study conducted on 25 infant formula samples revealed widespread carbonyl and dicarbonyl compounds in both powdered and liquid variants. ANOVA results exhibited variations in compound concentrations among different sample groups. Clustering analyses delineated distinct groups based on carbonyl content, indicating the potential of these compounds as markers for lipid peroxidation and food quality assessment. This method serves as a valuable tool for evaluating infant formula quality, stability towards oxidation, and safety.
Read full abstract