The combined algebraic spiral (CAS) effectively maximizes the geometric performance of a scroll compressor; however, its dynamic behavior remains inadequately explored. Utilizing the geometric model of the CAS scroll compressor, this study derived the functional relationship between the meshing point and the rotation angle, and calculated the working chamber volume using the discrete Green's theorem method. A dynamic model of the CAS scroll compressor was developed, and the influence of various parameters on its dynamic characteristics was analyzed. The findings indicate that when the polar angle interval is less than 0.01π, the discrete Green's theorem method accurately computes the working chamber volume. Among the gas forces acting on the CAS scroll compressor, the axial gas force is the most significant, followed by the tangential gas force, while the radial gas force is considerably smaller. The tangential gas force predominantly influences the overturning and rotational moments. Notably, when the polar angles of the connection points between the higher-order curve and the starting and ending algebraic spirals are set at 1.5π and 3π, the gas force remains low while maintaining geometric performance. This configuration results in reduced variation in gas force and enhanced dynamic performance. The spiral coefficient and spiral index of the starting algebraic spiral should be set as intermediate values to ensure optimal geometric and dynamic performance of the CAS scroll compressor.
Read full abstract