Green roof systems (GRs) are effective tools for urban stormwater management. However, there is limited documentation of the long-term hydrological performance of GRs to support decision-making. This study evaluated long-term field monitoring records (7 years) from a 12-year-old GR, situated in a Moist Subtropical Mid-Latitude Climate, to analyze seasonality in and evolution of hydrological performance. The monitoring system was built within a pan lysimeter buried under substrate layers matching the surrounding GR. The monitoring results highlight the efficacy of this GR in long-term stormwater runoff control. The GR can retain 87% of the annual precipitation and return 54% of the precipitation to the atmosphere through evapotranspiration (ET) and sustain long-term event-based mean runoff volume reductions, peak flow reductions, and flow delays of 82%, 93%, and 4.3 h, respectively. The initial moisture content prior to events was highly correlated with hydrological performance, with a seasonal mean Spearman correlation coefficient of 0.47, suggesting the potential of enhancing ET from the GR to improve performance. Substrate water holding capacity increased over time, but no obvious changes in water retention performance were observed. These monitoring results from the aging GR demonstrate the effectiveness of GR systems for long-term stormwater management.
Read full abstract