ObjectivesThere is growing consensus that aortic diameter is a flawed predictor of aortic dissection risk. We hypothesized that aortic tissue metrics would be better predicted by clinical metrics other than aortic diameter. Our objectives were to (1) characterize circumferential aortic failure stress and stretch as a result of aortic size and patient demographics, and (2) identify the influence of bicuspid aortic valve on failure metrics. MethodsFrom February 2018 to January 2021, 136 aortic tissue samples were obtained from 86 adults undergoing elective ascending aorta repair. Uniaxial biomechanical testing to failure, defined as a full-thickness central tear, was performed to obtain tissue failure stress and failure stretch and compared with clinical data and preoperative computed tomography imaging. The relationships among aortic diameter, patient demographics, and failure metrics were assessed using random forest regression models. ResultsMedian failure stress was 1.46 (1.02-1.94) megapascals, and failure stretch was 1.36 (1.27-1.54). Regression models correlated moderately with failure stress (R2 = 0.557) and highly with failure stretch (R2 = 0.806). Failure stress decreased with increasing age, lower body mass index, thicker tissue, and tricuspid aortic valves, whereas failure stretch was most highly correlated with age. Aortic area-to-height index outperformed aortic diameter in all models. ConclusionsAneurysmal ascending aortic tissue failure metrics correlated with available clinical metrics. Greater tissue thickness, older age, and tricuspid aortic valve morphology outperformed aortic diameter, warranting further investigation into the role of a patient-specific multifactorial dissection risk assessment over aortic diameter as a sole marker of aortic tissue integrity.
Read full abstract