Spherical trigonometry formulae are widely adopted to solve various navigation problems. However, these formulae only express the relationships between the sides and angles of a single spherical triangle. In fact, many problems may involve different types of spherical shapes. If we can develop the different formulae for specific spherical shapes, it will help us solve these problems directly. Thus, we propose two types of formulae for combined spherical triangles. The first set are the formulae of the divided spherical triangle, and the second set are the formulae of the spherical quadrilateral. By applying the formulae of the divided spherical triangle, waypoints on a great circle track can be obtained directly without finding the initial great circle course angle in advance. By applying the formulae of the spherical quadrilateral, the astronomical vessel position can be yielded directly from two celestial bodies, and the calculation process concept is easier to comprehend. The formulae we propose can not only be directly used to solve corresponding problems, but also expand the spherical trigonometry research field.
Read full abstract