PurposeWatermarking technique is one of the significant methods in which carrier signal hides digital information in the form of watermark to prevent the authenticity of the stakeholders by manipulating different coefficients as watermark in time and frequency domain to sustain trade-off in performance parameters. One challenging component among others is to maintain the robustness, to limit perceptibility with embedding information. Transform domain is more popular to achieve the required results in color image watermarking. Variants of complex Hadamard transform (CHT) have been applied for gray image watermarking, and it has been proved that it has better performance than other orthogonal transforms. This paper is aimed at analyzing the performance of spatio-chromatic complex Hadamard transform (Sp-CHT) that is proposed as an application of color image watermarking in sequency domain (SD).Design/methodology/approachIn this paper, color image watermarking technique is designed and implemented in SD using spatio-chromatic – conjugate symmetric sequency – ordered CHT. The color of a pixel is represented as complex number a*+jb*, where a* and b* are chromatic components of International Commission on Illumination (CIE) La*b* color space. The embedded watermark is almost transparent to human eye although robust against common signal processing attacks.FindingsBased on the results, bit error rate (BER) and peak signal to noise ratio are measured and discussed in comparison of CIE La*b* and hue, saturation and value color model with spatio-chromatic discrete Fourier transform (Sp-DFT), and results are also analyzed with other discrete orthogonal transforms. It is observed from BER that Sp-CHT has 8%–12% better performance than Sp-DFT. Structural similarity index has been measured at different watermark strength and it is observed that presented transform performs better than other transforms.Originality/valueThis work presents the details and comparative analysis of two orthogonal transforms as color image watermarking application using MATLAB software. A finding from this study demonstrates that the Complex Hadamard transform is the competent candidate that can be replaced with DFT in many signal processing applications.
Read full abstract