The fracture toughness and wear resistance of WC-based ceramics are crucial factors that determine their subsequent applications. In this study, the mechanical and tribological properties of expanded graphite (EG) reinforced WC ceramics consolidated by oscillatory pressure sintering (OPS) were investigated. The results demonstrated that the combination of dynamic pressure and EG had a synergistic effect, resulting in a much higher relative density of 0.2 wt% EG/WC ceramics reaching up to 99.78%. Simultaneously, 0.2 wt% EG/WC ceramics demonstrated a reduced grain size, with fracture toughness, flexural strength and wear rate reaching 7.54 MPa·m1/2, 1262 MPa and 2.16×10-7 mm3·N-1·m-1, respectively. EG was present in the form of graphene nanoplatelets (GNPs) within WC ceramics. The primary toughening mechanisms involved the bridging and pulling out of GNPs, as well as the generation of microcracks induced by GNPs. Additionally, the exceptional thermal conductivity of GNPs can facilitate heat dissipation and reduce thermal damage. The wear resistance of WC-EG ceramics was primarily enhanced through improving overall mechanical properties and decreasing the occurrence of oxidation and adhesive wear.
Read full abstract