Fluoride is a necessary element for human health, but excessive fluoride intake is found toxic to the liver. Previous studies confirmed that Grape seed procyanidin extract (GSPE) protects against fluoride-induced hepatic injury. However, the mechanism underlying this protective effect remains obscure. To evaluate the protective effect of GSPE against fluoride-induced hepatic injury and explore the possible hepatoprotective role of the Nrf2 signaling pathway to find effective strategies for the treatment and prevention of fluoride-induced hepatotoxicity. This study aims to explore the mechanisms by which GSPE attenuates fluoride-induced hepatotoxicity through a rat drinking water poisoning model. Hepatic injury was determined by serum biochemical parameters, oxidative parameters, HE, and TUNEL analysis. The protein expression levels of apoptosis-related proteins like Bax, B-cell lymphoma-2 (Bcl-2), and Caspase-3 and the nuclear factor, erythroid 2 like 2 (Nrf2) were analyzed by Western blot. Our results showed that GSPE administration reduced fluoride-induced elevated serum ALT and AST and enhanced the antioxidant capacity of the liver. In addition, GSPE mitigated fluoride-induced histopathological damage and reduced the liver cell apoptosis rate. Furthermore, GSPE significantly up-regulated the expression and nuclear translocation of the Nrf2 and decreased apoptosis-related proteins like Bax and caspase-3 in the hepatic. Taken together, GSPE exerts protective effects on the oxidative damage and apoptosis of fluoride-induced hepatic injury via the activation of the Nrf2 signaling pathway. This study provides a new perspective for the mechanism study and scientific prevention and treatment of liver injury induced by endemic fluorosis.
Read full abstract