Echinococcosis is a zoonotic disease, which seriously endangers human health. The immune game between parasite and host is not fully understood. Exosomes are thought to be one of the ways of information communication between parasite and host. In this study, we attempted to explore the communication between Echinococcus granulosus and its host through the medium of exosomes. We collected plasma from E. granulosus patients (CE-EXO) and healthy donors (HD-EXO) and extracted exosomes from the plasma. The expression profile of miRNA in plasma was determined by second generation sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to annotate the function of target genes of differential miRNAs. Meanwhile, we co-cultured plasma exosomes from healthy donors and plasma exosomes from E. granulosus patients with Jurkat T cells with or without phytohaemagglutinin (PHA) stimulation. The expression of CD69 on Jurkat T cells was detected by flow cytometry. The results showed that the miRNA of exosomes between healthy donors and E. granulosus patients was significantly different. GO and KEGG were used to annotate the function of target genes of differential miRNAs. The results indicate that many important pathways are involved in inflammation, metabolism, and immune response after parasite infection, such as p53 signaling pathway, PI3K-Akt signaling pathway, and glycolysis/gluconeogenesis. Flow cytometry showed that CE-EXO reduced the expression of CD69 + on Jurkat T cells. Our present results suggest that these differentially expressed miRNAs may be important regulators of parasite-host interactions. Meanwhile, functional prediction of its target genes provides valuable information for understanding the mechanism of host-parasite interactions. These results provide clues for future studies on E. granulosus escape from host immune attack, which could help control E. granulosus infection.
Read full abstract