Twin-screw granulation (TSG) is an emerging continuous wet granulation technique that has not been widely applied in the industry due to a poor mechanistic understanding of the process. This study focuses on improving this mechanistic understanding by analyzing the effects of the mixing dynamics on the granule quality attributes (PSD, content uniformity, and microstructure). Mixing is an important dynamic process that simultaneously occurs along with the granulation rate mechanisms during the wet granulation process. An improved mechanistic understanding was achieved by identifying and quantifying the physically relevant intermediate parameters that affect the mixing dynamics in TSG, and then their effects on the granule attributes were analyzed by investigating their effects on the granulation rate mechanisms. The fill level, granule liquid saturation, extent of nucleation, and powder wettability were found to be the key physically relevant intermediate parameters that affect the mixing inside the twin-screw granulator. An improved geometrical model for the fill level was developed and validated against existing experimental data. Finally, a process map was developed to depict the effects of mixing on the temporal and spatial evolution of the materials inside the twin-screw granulator. This process map illustrates the mechanism of nucleation and the growth of the granules based on the fundamental material properties of the primary powders (solubility and wettability), liquid binders (viscosity), and mixing dynamics present in the system. Furthermore, it was shown that the process map can be used to predict the granule product quality based on the granule growth mechanism.
Read full abstract