Clostridium perfringens has been implicated in food poisoning outbreaks linked to cooked cured meat. Although there are regulatory requirements to prevent its growth during meat production, additional control measures may reduce the C. perfringens risk. This study examined the effect of sodium chloride (salt) and sodium tripolyphosphate (STPP) on the growth probability of C. perfringens in a cooked cured meat. Ground beef (10 % fat) was mixed with 200 ppm sodium nitrite, 1–4 % salt, and 0–1.5 % STPP and inoculated with C. perfringens spores. Five grams of meat were vacuum-packaged in individual bags and heated at 70 °C for 30 min to activate the spores. Ten bags from each formulation were incubated at 46 °C for 48 h. The populations of C. perfringens before and after incubation were enumerated to determine the growth event of C. perfringens (an increase of >1.0 log CFU/g population after incubation) for each sample. The growth event ratios were fitted with a logistic model to develop a C. perfringens growth probability model as a function of the concentrations of salt and STPP. The combinations of 1 % salt and up to 1.5 % STPP were not able to prevent the growth of C. perfringens. For 2, 3, and 4 % salt, the growth/no growth boundaries were observed at approximately 1.5, 1.0, and 0.5 % STPP, respectively. The resulting model indicates that salt and STPP were significant factors (p < 0.05) affecting the growth probability of C. perfringens. This study identified the concentrations of salt and STPP that prevent the growth of C. perfringens in a cooked cured meat containing 200 ppm sodium nitrite. The model could be used for predicting the growth probability of C. perfringens as affected by salt and STPP concentrations and for selecting the additive concentrations that may reduce the growth probability of C. perfringens in cooked cured meat products.
Read full abstract