After being applied to pharmaceutics removal from water, the newly synthesized composite hydrogel based on chemically modified gelatin and PVA-containing graphene nanoparticles (CHGP-GOn), was now assessed for another application. The hydrogels were able to interact with Microcystis aeruginosa cells, resulting in the formation of small cell colonies and cell lysis related to exposure time. In the removal tests, the best general removal efficiency of cyanobacterial cells was achieved with the highest adsorbent mass at natural pH, achieving values of removal of 90 % for cells, 75 % chlorophyll-a, 63 % and 43 % for turbidity and visible colour removals, respectively. From the kinetic study, the results showed that cell inactivation has achieved removal equilibrium in 19 h, with a qe of 106 × 106 cells/g of CHGP-GOn. Furthermore, with the results from the other parameters, the tests presented a removal equilibrium of just 14 h, there was a removal of 4670 µg/L of Chlorophyll-a and 6450 µg/L/g of MC-LR microcystin per gram of adsorbent. The experimental data best fitted to the Elovich model, indicating possible removal by chemisorption. Analysis of cellular integrity and morphology showed that within just 12 h, few cyanobacterial cells showed membrane disruption and release of intracellular toxins, with an increase in the toxicity medium related to extended exposure time, and presentation of morphological and superficial cellular damage within 24 h. In addition, other characteristic measurements presented an exceptional mechanical strength and resistance that was slightly reduced after swelling. However, showing good development during adsorption tests under agitation, without any detachment of material and an absence of GO leaching. Therefore, it can be concluded that the synthesized hydrogel should be applied in removing M. aeruginosa cells and their toxins from water treatment, serving as an excellent alternative to traditional adsorbents.
Read full abstract