To synergistically enhance the strength and toughness of titanium-free maraging steel, a multi-scale characterization method was used to illustrate the effects of low-temperature solution treatment and double aging treatment on the microstructure of titanium-free maraging steel in this paper. After the low-temperature solution treatment and the double aging treatment, the tensile strength of titanium-free maraging steel increased from 1954 MPa to 2160 MPa and the elongation increased by 8.95 %. By the low-temperature solution treatment, the original austenite grain size of the titanium-free maraging steel was refined to 0.69 μm. The double aging treatment promoted the diffusion of Mo and Ni elements, increased the volume fraction of ω phase, Ni3Mo nano-precipitation phase and reversed austenite, and refined the size of ω phase and Ni3Mo by 14.2 % and 7.9 %, respectively. The nanoparticles of titanium-free maraging steel mainly include the ω phase, Ni3Mo and Laves phase. The strengthening mechanism of nanoparticles was quantitatively evaluated from the shear mechanism and Orowan dislocation loop mechanism. The mechanism shows that the ω phase is the main contributor to the overall precipitation strengthening. Therefore, low-temperature solution treatment and double aging treatment provide a potential solution for achieving high strength and high toughness in maraging steel.
Read full abstract