This investigation focused on the thermal stability of nanocrystalline (NC) binary and ternary Ni-Y-Zr alloys synthesized through ball-milling. The microstructural changes following annealing, conducted up to 1200 °C, were studied using various techniques, including X-ray-line-broadening, micro-hardness, and transmission electron microscopy. The results revealed that the rate of grain growth observed in the Ni-Y-Zr ternary alloy at 600 °C resembled that in pure NC-Ni at 100 °C. Moreover, the Ni-1.4Y-1.1Zr ternary system exhibited a maximum hardness of 753 HV (average) at 600 °C, which was approximately 60 HV higher than the Ni-1.2Y/1.9Y and Ni-1.5Zr/2.7Zr binary alloys and more than double that of pure NC-Ni for similar grain sizes. These characteristics were linked to the formation of nano-sized oxides and nitrides of Y and Zr within the microstructure. In summary, this study emphasizes the notable high-temperature microstructure stability of Ni-based ternary alloys, attributed to the additive effects of Y and Zr. Due to this extended stability, this ternary system could find potential applications at elevated temperatures in areas such as jet engine turbine blades and power plants.
Read full abstract