The results of research on the influence of the chemical composition of cast iron and its potential changes in the production cycle on the elastic properties and the correctness of numerical simulations of the natural frequency of ventilated brake discs are presented. The tests were carried out for three grades of gray cast iron with flake graphite with a eutectic saturation coefficient ranging from 0.88 to 1.01. A quantitative metallographic assessment of the pearlitic cast iron matrix and graphite precipitates was carried out, and the hardness and compressive/tensile strength of individual cast iron grades were determined, taking into account the limit contents of the alloying elements. Next, ultrasonic tests were performed, and the elastic properties of cast iron were determined. Based on the obtained data, a numerical modal analysis of brake discs was performed, the results of which were compared with the actual values of an FRF frequency analysis. The error of the computer simulations was estimated at approx. 1%, and it was found that the accuracy of the calculations of the first natural frequency did not depend on the dimensions (size) of the discs and the chemical composition of the cast iron from which they were cast. The functional relationships between the chemical composition of cast iron, its strength and elasticity and the first natural frequency of the disc vibrations were determined, and a database of the material parameters of the produced cast iron grades was developed. An implementation example showed the validation of the brake disc design with natural frequency prediction and demonstrated a high convergence of the experimental results with the simulated values. Using I-MR control cards, both the effectiveness of designing and predicting the natural vibrations of brake discs based on the implemented material database as well as the stability of the gray cast iron production and disc casting processes were confirmed.