Organic–inorganic composites of (E)-3,5-di(9 H-carbazol-9-yl)-N-(4-(diphenylamino)benzylidene)aniline/dopamine-modified WO3 (P(TPACz)/WO3-PDA) were prepared by electrochemical polymerisation. The as-prepared P(TPACz)/WO3-PDA composites showed good electrochromic and electrochemical performance. The prominent electrochemical performance of P(TPACz)/WO3-PDA represents a high areal capacitance (32.15 mF cm−2 at 0.1 mA cm−2) and wide range of potential windows (-2.0−1.6 V). Additionally, symmetric supercapacitor devices based on P(TPACz)/WO3-PDA composite films were successfully constructed, which exhibited a high specific capacitance (13.88 mF cm−2 at 0.02 mA cm−2) and an energy density of 7.71 × 10−3 mWh cm−2 in n-doped station. The remarkable electrochromic and electrochemical performances are due to the synergy between the organic polymer and WO3-PDA. A complete large-area composite film structure with high conductivity promises fast electronic transport. This study provides a method for preparing multifunctional composite electrode materials, offering technical support for intelligent displays and energy storage technologies.
Read full abstract