Using the density functional theory (DFT) and the spectral limited maximum efficiency (SLME) model, we thoroughly evaluate the material MA2GeI4 as a prospective absorber for photovoltaic applications. This material belongs to the family of layered material organic-inorganic Ruddlesden-Popper perovskites, which have attracted interest due to their stability. Our first-principles calculations show that MA2GeI4 has a direct bandgap that is suitable for light absorption at 1.37 eV. To understand the source of its exceptional optical properties, the electronic structure, density of states, and optical properties were examined. Also, we used the SLME model to estimate the MA2GeI4 solar cell efficiency. The latter was found to be about 32.6% power conversion efficiency. The material’s excellent absorption and promising photovoltaic properties contribute to its high efficiency, even when quantum confinement occurs between layers. We found that MA2GeI4 is a potential absorber material for solar applications, demonstrating both good absorption characteristics and advantageous electrical properties. This discovery lays the path for additional experimental investigation of MA2GeI4 based solar cell.
Read full abstract