The optic tectum of goldfish, as in other vertebrates, plays a major role in the generation of orienting movements, including eye saccades. To perform these movements, the optic tectum sends a motor command through the mesencephalic and rhombencephalic reticular formation, to the extraocular motoneurons. Furthermore, the tectal command is adjusted by a feedback signal arising from the reticular targets. Since the features of the motor command change with respect to the tectal site, the present work was devoted to determining, quantitatively, the particular reciprocal connectivity between the reticular regions and tectal sites having different motor properties. With this aim, the bidirectional tracer, biotin dextran amine, was injected into anteromedial tectal sites, where eye movements with small horizontal and large vertical components were evoked, or into posteromedial tectal sites, where eye movements with large horizontal and small vertical components were evoked. Labeled boutons and somas were then located and counted in the reticular formation. Both were more numerous in the mesencephalon than in the rhombencephalon, and ipsilaterally than contralaterally, with respect to the injection site. Furthermore, the somas showed a tendency to be located in the area containing the most dense labeling of synaptic endings. In addition, labeled boutons were often observed in close association with retrogradely stained neurons, suggesting the presence of a tectoreticular feedback circuit. Following the injection in the anteromedial tectum, most of the boutons and labeled neurons were found in the reticular formation rostral to the oculomotor nucleus. Conversely, following the injection in the posteromedial tectum, most of the boutons and neurons were also located in the caudal mesencephalic reticular formation. Finally, boutons and neurons were found in the rhombencephalic reticular formation surrounding the abducens nucleus. They were more numerous following the injection in the posteromedial tectum. These results demonstrate characteristic patterns of reciprocal connectivity between physiologically different tectal sites and the mesencephalic and rhombencephalic reticular formation. These patterns are discussed in the framework of the neural substratum that underlies the codification of orienting movements in goldfish.
Read full abstract