In idiopathic pulmonary fibrosis (IPF), epithelial abnormalities are present including bronchiolization and alveolar cell dysfunction. We hypothesized that the IPF microenvironment disrupts normal epithelial growth and differentiation. We mimicked the soluble factors within an IPF microenvironment using an IPF cocktail (IPFc), composed of nine factors which are increased in IPF lungs (CCL2, IL-1β, IL-4, IL-8, IL-13, IL-33, TGF-β, TNFα, and TSLP). Using IPFc, we asked whether the soluble factor milieu in IPF affects epithelial growth and differentiation and how IPFc compares to TGF-β alone. Epithelial growth and differentiation were studied using mouse lung organoids (primary Epcam+ epithelial cells co-cultured with CCL206 fibroblasts). Organoids exposed to IPFc and TGF-β were re-sorted into epithelial and fibroblast fractions and subjected to RNA sequencing. IPFc did not affect the number of organoids formed. However, pro-surfactant protein C expression was decreased. On these parameters, TGF-β alone had similar effects. However, RNA sequencing of re-sorted organoids revealed that IPFc and TGF-β had distinct effects on both epithelial cells and fibroblasts. IPFc upregulated goblet cell markers, whereas these were inhibited by TGF-β. Although both IPFc and TGF-β increased extracellular matrix gene expression, only TGF-β increased myofibroblast markers. VEGF-C and Wnt signaling were among the most differentially regulated signaling pathways by IPFc versus TGF-β. Interestingly, Wnt pathway activation rescued Sftpc downregulation induced by IPFc. In conclusion, IPFc alters epithelial differentiation in a way that is distinct from TGF-β. Alterations in Wnt signaling contribute to these effects. IPFc may be a more comprehensive representation of the soluble factor microenvironment in IPF.