The western region of the Chinese Loess Plateau (CLP) on the western side of the Liupan Mountains connects the Tibetan Plateau with the deserts of the northern arid zones. This region is key for understanding of the coupled relationship between tectonic uplift and surface processes (erosion and climate) on the Tibetan Plateau; however, the variation of Quaternary wind-dust sources in the region remains uncertain, confounding analysis. In this paper, we conduct a source tracing investigation using detrital zircon U-Pb dating of 12 loess layers from the Huining aeolian sedimentary sequence of the western CLP, reconstruct the history of provenance changes during the Quaternary Period, and further explore driving mechanisms. Results show that aeolian dust from the western CLP is mainly from the northeastern margin of the Tibetan Plateau (NTP). At 1.8–1.66 Ma, the main source region was the NTP, which corresponds to the Episode C uplift event of the Tibetan Plateau. The dominant source area transitioned to the Gobi Altay Mountains (GAMs) around 1.5–1.4 Ma. This shift suggests that the tectonic uplift of the Tibetan Plateau had entered a period of stasis following the conclusion of Episode C, leading to increased transport of detrital material from the GAMs by the East Asian Winter Monsoon. After 1.24 Ma, the dominant source region abruptly changed from the GAMs to the NTP and lasted until 0.04 Ma. The topographic fluctuations caused by the Kunhuang Movement appears to have been the main reason for the sudden source change. Based on our results and evidence from previous studies, the source changes that occurred during the Quaternary Period were in response to a combination of tectonic events and climate change. Comparison of zircon age spectra between the eastern and western CLP further support the idea that the Plateau Winter Monsoon was the main transport system for aeolian dust in the western CLP.