Post-translational modifications including glycosylation, phosphorylation, and lipidation expand the functionality and diversity of proteins. Protein glycosylation is one of the most abundant post-translational modifications in mammalian cells. The glycosylation process is regulated at multiple steps, including transcription, translation, protein folding, intracellular transport, and localization, and activity of glycosyltransferases and glycoside hydrolases. The glycosylation process is also affected by the concentration of sugar nucleotides in the lumen of the Golgi apparatus. Unlike the synthesis of other biological macromolecules, such as nucleic acids and proteins, glycan biosynthesis is not a template-driven process. In addition, the chemical complexity of glycan structures makes the glycosylation network extraordinarily intricate. We previously developed a web-based tool specially focused on glycan metabolic pathways known as GlycoMaple, which is able to easily visualize and estimate glycosylation pathways based on gene expression data. We recently updated GlycoMaple to incorporate the new genes and glycosylation pathways. Here, we introduce and discuss the uses and upgrades of GlycoMaple.
Read full abstract