Glycosylation is a common post-translational modification of brain proteins including cell surface adhesion molecules, synaptic proteins, receptors and channels, as well as intracellular proteins, with implications in brain development and functions. Using advanced state-of-the-art glycomics and glycoproteomics technologies in conjunction with glycoinformatics resources, characteristic glycosylation profiles in brain tissues are increasingly reported in the literature and growing evidence shows deregulation of glycosylation in central nervous system disorders, including aging associated neurodegenerative diseases. Glycan signatures characteristic of brain tissue are also frequently described in cerebrospinal fluid due to its enrichment in brain-derived molecules. A detailed structural analysis of brain and cerebrospinal fluid glycans collected in publications in healthy and neurodegenerative conditions was undertaken and data was compiled to create a browsable dedicated set in the GlyConnect database of glycoproteins (https://glyconnect.expasy.org/brain). The shared molecular composition of cerebrospinal fluid with brain enhances the likelihood of novel glycobiomarker discovery for neurodegeneration, which may aid in unveiling disease mechanisms, therefore, providing with novel therapeutic targets as well as diagnostic and progression monitoring tools.