Pinholin S2168 is a viral integral membrane protein whose function is to form nanoscopic "pinholes" in bacterial cell membranes to induce cell lysis as part of the viral replication cycle. Pinholin can transition from an inactive to an active conformation by exposing a transmembrane domain (TMD1) to the extracellular fluid. Upon activation, several copies of the protein assemble via interactions among a second transmembrane domain (TMD2) to form a single pore, thus hastening cell lysis and viral escape. The following experiments provide conformational descriptors of pinholin in active and inactive states and elucidate the molecular driving forces that control pinholin activity. In the present study, molecular dynamics (MD) simulations have been used to refine experimentally derived conformational descriptors into an atomistically detailed model of irsS2168, an antiholin mutant. To provide additional details about the thermodynamics of pinholin activation and to overcome large intrinsic kinetic barriers to activation, alchemical free energy simulations have been conducted. Alchemical mutations reveal the change in folding free energy upon mutation. The results suggest that alchemical mutations are an effective tool to rationalize experimental observations and predict the effects of site mutations on conformational states for proteins integrated into lipid bilayers. S16F, A17Q, A17Q+G21Q, and A17Q+G21Q+G14Q mutants reveal how changes in hydrophilicity and disruption of the glycine zipper motif influence pinholin's thermodynamic equilibrium, favoring the active conformation. These findings align with experimental observations from DEER spectroscopy, demonstrating that mutations increasing the hydrophilicity of TMD1 promote activation by making TMD1 more likely to exit the membrane and enter the extracellular fluid.