Bisphenol S (BPS) is commonly used for the industrial production of thermal paper, polycarbonate plastics, epoxy resins and other materials. Studies have reported that BPS can lead to triglyceride (TAG) or/and cholesterol (CHO) accumulation in the liver in zebrafish and mice, but the reasons for the different types of lipids that accumulate in the liver following BPS exposure are unclear. Here, the influences of lower-dose (10 mg/kg body weight/day) and high-dose (50 mg/kg body weight/day) BPS exposure to male SD rats on the accumulation of different lipids in the liver were explored. The results indicated that BPS treatment increased the levels of acetyl-CoA and glycogen in the liver. A lower dose of BPS upregulated the mRNA and protein expression levels of sterol regulatory element-binding protein 1 (srebp1), which is involved in the de novo synthesis of TAG in the liver, thus promoting the synthesis of glycerides (diacetylglyceride and TAG). However, a higher dose of BPS induced CHO accumulation, but inhibited the mRNA expression of genes (i.e., srebp2, hmgcr and hmgcs) involved in the de novo synthesis of CHO in the liver. Excessive accumulation of glycerides and CHO led to destruction of the physiological structure of rat liver, causing disorders in liver function. Our data provide new insight into the different mechanisms by which glyceride and CHO accumulate in the liver after BPS exposure.