Vacuous chewing movements (VCM) have been utilized as an experimental model of orofacial dyskinesia (OD) in rodents to study the underlying molecular mechanisms related to tardive dyskinesia (TD). This study aimed to investigate if the acute treatment with haloperidol can alter components of the dopaminergic synapse or its modulators such as glutamic acid decarboxylase (GAD67) and adenosine 2A (A2A) receptor. Furthermore, to evaluate if changes in molecular markers are associated with the number of VCMs induced by haloperidol in rats it is proposing a method to classify the animals into High and Low VCM groups. Here, we treated rats with haloperidol decanoate (single injection, intramuscularly, 28mg/Kg of unconjugated haloperidol) and evaluated the number of VCMs after 4 weeks. Haloperidol-treated rats were divided into three groups (Low, High, and Spontaneous VCM) according to the evaluation of the VCM profile proposed here. After, dopamine (DA) levels, monoamine oxidase (MAO) activity, and the immunoreactivity of tyrosine hydroxylase (TH), dopamine transporter (DAT), D2 receptor, GAD67, and A2A were determined in brain structures. No significant differences were found in DA levels, MAO activity, and immunoreactivity of the TH, DAT, D2 receptor, GAD67, and A2A receptor in brain structures. VCM intensity was correlated with TH immunoreactivity in Sn in the High VCM group while it was inversely correlated with the immunoreactivity of the A2A receptor in the striatum of the Spontaneous VCM group. Other significant correlations were found considering the VCM profile suggesting that High VCM after acute haloperidol treatment seems to be associated with the lack of ability to reorganize the neurotransmission in the nigrostriatal pathway. Further studies could clarify the main targets involved in the motor side effects of antipsychotics. The present study demonstrated an easy way to separate the animals into High and Low VCMs.
Read full abstract