BACKGROUND & AIMSTGFβ1 induces plasma membrane (PM) accumulation of glucose transporter 1 (Glut1) required for glycolysis of hepatic stellate cells (HSCs) and HSC activation. This study aimed to understand how Glut1 is anchored/docked onto the PM of HSCs. METHODSHSC expression of protein kinase M zeta isoform (PKMζ) was detected by RT-PCR, Western blotting, and immunofluorescence. PKMζ level was manipulated by shRNA or overexpression; HSC activation was assessed by cell expression of activation markers; PM Glut1, glucose uptake, and glycolysis of HSCs were analyzed by biotinylation, 2-NBDG-based assay, and Seahorse Glycolysis Stress Test. Phospho-mutants of vasodilator-stimulated phosphorylated protein (VASP) were created by site-directed mutagenesis. TGFβ transcriptome was obtained by RNA sequencing. Single-cell RNA sequencing datasets and immunofluorescence were leveraged to analyze PKMζ expression in cancer-associated fibroblasts (CAFs) of colorectal liver metastases. Function of HSC PKMζ was determined by tumor/HSC co-implantation study. RESULTSPrimary human and murine HSCs express PKMζ, but not full-length PKCζ. PKMζ knockdown suppresses whereas PKMζ overexpression potentiates PM accumulation of Glut1, glycolysis, and HSC activation induced by TGFβ1. Mechanistically, PKMζ binds to and induces VASP phosphorylation at serines 157 and 239 facilitating anchoring/docking of Glut1 onto the PM of HSCs. PKMζ expression is increased in the CAFs of murine and patient colorectal liver metastases compared to quiescent HSC. Targeting PKMζ suppresses transcriptome, CAF activation of HSCs, and colorectal tumor growth in mice. CONCLUSIONSSince HSCs are also a major contributor of liver fibrosis, our data highlight PKMζ and VASP as targets to inhibit metabolic reprogramming, HSC activation, liver fibrosis, and the pro-metastatic microenvironment of the liver.
Read full abstract