This paper studies the p-Frobenius vector of affine semigroups S⊂Nq\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$S\\subset \\mathbb {N}^q$$\\end{document}. Defined with respect to a graded monomial order, the p-Frobenius vector represents the maximum element with at most p factorizations within S. We develop efficient algorithms for computing these vectors and analyze their behavior under the gluing operations with Nq\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {N}^q$$\\end{document}.
Read full abstract