BackgroundGlioma is the most common brain tumor. IDH mutations occur frequently in glioma, indicating a more favorable prognosis. We aimed to explore energy metabolism-related genes in glioma to promote the research and treatment.MethodsDatasets were obtained from TCGA and GEO databases. Candidate genes were screened by differential gene expression analysis, then functional enrichment analysis was conducted on the candidate genes. PPI was also carried out to help determine the target gene. GSEA and DO analysis were conducted in the different expression level groups of the target gene. Survival analysis and immune cell infiltrating analysis were performed as well.ResultsWe screened 34 candidate genes and selected GLUD1 as the target gene. All candidate genes were significantly enriched in 10 KEGG pathways and 330 GO terms. GLUD1 expression was higher in IDH-mutant samples than IDH-wildtype samples, and higher in normal samples than tumor samples. Low GLUD1 expression was related to poor prognosis according to survival analysis. Most types of immune cells were negatively related to GLUD1 expression, but monocytes and activated mast cells exhibited significantly positive correlation with GLUD1 expression. GLUD1 expression was significantly related to 119 drugs and 6 immune checkpoint genes. GLUD1 was able to serve as an independent prognostic indicator of IDH-mutant glioma.ConclusionIn this study, we identified an energy metabolism-related gene GLUD1 potentially contributing to favorable clinical outcomes of IDH-mutant glioma. In glioma, GLUD1 related clinical outcomes and immune landscape were clearer, and more valuable information was provided for immunotherapy.
Read full abstract