Since the opportunistic pathogen Pneumocystis carinii grows only slowly in vitro, the mechanism of glucose uptake was investigated to better understand how the organism transports nutrients. Using the non-metabolizable analogue 2-deoxyglucose, two uptake systems were detected with Q 10 values of 2.12 and 2.09, respectively. One had a high affinity ( K m=67.5 μM) and the other a low affinity ( K m=5.99 mM) for 2-deoxyglucose uptake. Glucose or deoxyglucose phosphate products from transported radiolabeled substrates were not detected during the incubation times used in this study. Both systems were inhibited by mannose, galactose, fructose, galactosamine, glucosamine, and glucose but not by allose, 5-thioglucose, xylose, glucose 6-phosphate and glucuronic acid. Salicylhydroxamate, KCN, iodoacetate, and 2,4-dinitrophenol inhibited the high-affinity transporter, suggesting it required ATP. Ouabain, monensin, carbonyl cyanide m-chlorophenylhydrazone, and N, N′-dicyclohexylcarbodiimide also inhibited deoxyglucose uptake, as did the replacement of Na + in the incubation medium with choline, indicating requirements for Na + and H +. The high-affinity system was also inhibited by the protein synthesis inhibitors cycloheximide and chloramphenicol. In contrast, the low-affinity system transported deoxyglucose by facilitated diffusion mechanisms. Unlike the human erythrocyte glucose transporter GLUT1, the P. carinii transporters recognized fructose and galactose and were relatively insensitive to cytochalasin B, suggesting that the P. carinii glucose transporters may be good drug targets.
Read full abstract