The development of high-performance flexible pressure sensors with porous hierarchical microstructures is limited by the complex and time-consuming preparation processes of porous hierarchical microstructures. In this study, a simple modified heat curing process was first proposed to achieve one-step preparation of porous hemispherical microstructures on a polydimethylsiloxane (PDMS) substrate. In this process, a laser-prepared template was used to form surface microstructures on PDMS film. Meanwhile, the thermal decomposition of glucose monohydrate additive during heat curing of PDMS led to the formation of porous structures within PDMS film. Further, based on the obtained PDMS/CNTs electrodes with porous hemisphere array and ionic polymer dielectric layers, high-performance ionic piezocapacitive sensors were realized. Under the synergistic effect of the low-stiffness porous hemisphere microstructure and the electric double layer of the ionic polymer film, the sensor based on an ionic polymer film with a 1:0.75 ratio of P(VDF-HFP):[EMIM][TFSI] not only achieves a sensitivity of up to 106.27 kPa-1 below 3 kPa, but also has a wide measurement range of over 400 kPa, which has obvious advantages in existing flexible piezocapacitive sensors. The rapid response time of 110 s and the good stability of 2300 cycles of the sensor further elucidate its practicality. The application of the sensor in pulse monitoring, speech recognition, and detection of multiple dynamic loads verifies its excellent sensing performance. In short, the proposed heat curing process can simultaneously form porous structures and surface microstructures on PDMS films, greatly simplifying the preparation process of porous hierarchical microstructures and providing a simple and feasible way to obtain high-performance flexible pressure sensors.