Drought is known to be the most important constraint to the growth and yield of agricultural products in the world, and plant symbiosis with arbuscular mycorrhizal fungi (AMF) can be a way to reduce drought stress negative impacts. A two-year experiment to investigate the factorial combination of mycorrhizal fungi (Glomus mosseae, Glomus intraradices, Control) and phosphorus fertilizer (application and non-application of phosphorus) on fruit yield and phenolic acids changes bitter gourd under different irrigation regimes as a split factorial based on a randomized complete block design. Three irrigation regimes, including irrigation after 20%, 50%, and 80% available soil water content depletion (ASWD), were considered in the main plots. The results showed that under water deficit stress, fruit yield and physiological (photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), RWC, total chlorophyll, and root colonization) parameters decreased compared to 20% ASWD, and biochemical (proline, soluble sugar, MDA, CAT, SOD, phenol) parameters and fruit phenolic acids (caffeic acid, coumaric acid, ferulic acid) increased. However, the inoculation of AMF and phosphorus fertilizer in three irrigation regimes decreased MDA content, but physiological and biochemical parameters and fruit phenolic acids were increased. In this study, the factorial combination of AMF and sufficient phosphorus improved the resistance of bitter gourd to water deficit, and this not only improved fruit yield but also increased fruit phenolic acids under 80% ASWD, which can be an innovation in the management of water resources and the production industry of medicinal plants with high antioxidant properties in water deficit areas.
Read full abstract