Due to the increasingly severe global warming trend, the reduction of CO2 emission and carbon capture have attracted growing interest. The separation of CO2 from gas mixtures, especially from point source and the atmosphere, is considered as one of the most important strategies for mitigating climate change. Porous metal–organic nanomaterials (PNMs), including metal-organic frameworks (MOFs) and metal-organic polyhedra (MOPs) have been extensively investigated in the fields of carbon capture, catalysts, sensors, biomedical imaging and gas storage. Their inherent pores, diverse surface function groups and potential modification possiblities make them competitive carbon capture materials. This review will introduce detailed scientific and technological advancements in PNMs and explain their fitness for carbon capture and separation, followed by the fabrication and application of mixed matrix membranes (MMMs) with PNMs. The current challenges appreared and solutions to improve the MMMs’ CO2 separation performance will also be stressed.
Read full abstract