Satellite-based navigation is an essential part of all the technology-dependent applications, such as road transport, cell phones, the medical field, aviation or the shipping industry, etc. The performance of the navigation systems depends upon how quickly they can acquire and process the received signals for positioning solutions. However, in dense urban or indoor environments, signal acquisition can be a challenging task due to fading as a result of multipath and/or interference. This paper presents post-processing acquisition results on Global Positioning System (GPS) signals to study the relationship between data lengths used for signal acquisition and the achieved signal power using a Fast Fourier Transform (FFT)-based circular correlation method. Based on this study, the detection performance of the FFT-based method has also been analyzed by intentionally degrading the signal power levels. A new Adaptive Data length (ADL) method for acquisition has been proposed in this paper, which can be used for speeding up the acquisition process and uses adaptive data lengths rather than fixed data lengths. The ADL method works by estimating the threshold level based on the noise present in the signal and then comparing it with the signal power levels. Less difference between the threshold level and signal power level means less data length will be used while more difference means that more data length will be used for acquisition. The proposed algorithm can be used in commercially available receivers for adopting to an adaptive acquisition process for increased efficiency.
Read full abstract