Although it is becoming increasingly apparent that histone methyltransferases and histone demethylases play crucial roles in the cellular response to hypoxia, the impact of hypoxic environments on global patterns of histone methylation is not well demonstrated. In this study, we try to detect the global levels of histone lysine methylation in HCC cases and analyze the correlation between these modifications and the activation of hypoxia-inducible factor 1α (HIF-1α). Immunohistochemistry was used to detect the global levels of histone H3 lysine 9 dimethylation (H3K9me2), histone H3 lysine 9 trimethylation (H3K9me3), histone H3 lysine 27 trimethylation (H3K27me3) and the nuclear expression of HIF-1α in tissue arrays from 111 paraffin-embedded HCC samples. Our analyses revealed that the global levels of H3K9me2, H3K9me3 and the nuclear expression of HIF-1α were distinctly higher in HCC tissues than in peritumoral tissues. Both H3K9me2 and H3K9me3 were positively correlated with the degree of tumor differentiation and the patients’ prognosis. Analysis based on the Pearson's correlation coefficient indicated a positive correlation between H3K9me2 and the nuclear expression of HIF-1α, and meanwhile, a significant correlation between the expression of H3K9me2 and H3K9me3 was also found. In addition, the combination of H3K9me2, H3K9me3 and HIF-1α, rather than one single histone modification or molecular maker, is a better prognostic maker for HCC patients. These findings provide new insights on the complex networks underlying cellular and genomic regulation in response to hypoxia and may provide novel targets for future therapies.
Read full abstract