In this work, failure mechanisms of metallised glass fibre reinforced epoxy composites under tensile loading were investigated using acoustic emission analysis. Sandblasting with Al2O3 was used to pre-treat the composite surface prior to metallisation, and therefore to improve adhesion. The sandblasting time was varied from 2 s to 6 s. A two-step metallisation process consisting of electroless and subsequent electroplating was used for depositing the copper coating on the pre-treated composite surface. The mechanical pre-treatment had no significant negative effect on the mechanical properties of the composite laminate. The acoustic emission (AE) from the metallised composite was recorded during tensile testing in order to investigate the failure mechanisms. AE-Signals were analysed using pattern recognition and frequency analysis techniques. A correlation between the cumulative absolute AE-energy and the mechanical behaviour of uncoated and coated specimens during tensile testing was successfully observed. It was shown that a stronger adhesion between substrate and coating leads to a lower release of mechanical elastic energy, which could be recorded by means of AE analysis. Furthermore, differences in peak frequency, frequency distribution and the use of pattern recognition techniques allowed classifying the signal into three failure mechanisms for the uncoated samples and four failure mechanisms for the coated samples, namely matrix cracking, fibre-matrix interface failure, fibre breakage and substrate-coating interface failure. Waveform and frequency analysis of the classified signals supported the identification of the failure mechanisms. Furthermore, optical investigation and SEM images of the tested samples and fracture surfaces confirmed the identified mechanisms evaluated by acoustic emission analysis.
Read full abstract