This study addresses the diverse application requirements of turbine blades by utilizing a composite anti-seepage masking layer to protect the Ni-based superalloy from Al deposition during aluminizing. Simultaneously, the unmasked areas simulate blade airfoils for aluminized coating formation. Ethylene-based and glass-ceramic coatings were evaluated for anti-seepage effectiveness after aluminizing at 800 ∼ 1000 ℃. The results reveal that ethylene-based coatings prevent Al diffusion into the substrate at 800 ℃, and degradation occurs at higher temperatures. However, adding a glass-ceramic coating significantly enhances high-temperature stability and suppresses ethylene-based coating fluidity. The composited anti-seepage masking layer, with the ethylene-based and glass-ceramic coating applied twice, exhibits excellent anti-seepage masking performance on GH4169, DZ22B, and K477 superalloys, providing protection and easy removal without affecting unmasked areas. This approach improves the comprehensive performance of turbine blades, meeting the requirements of both dovetail and airfoil sections.
Read full abstract